Nestin-mediated cytoskeletal remodeling in endothelial cells: novel mechanistic insight into VEGF-induced cell migration in angiogenesis.
نویسندگان
چکیده
Nestin is highly expressed in poorly differentiated and newly formed proliferating endothelial cells (ECs); however, the role of this protein in angiogenesis remains unknown. Additionally, the cytoskeleton and associated cytoskeleton-binding proteins mediate the migration of vascular ECs. Therefore, the aim of the present study was to determine whether VEGF regulates the cytoskeleton, as well as other associated proteins, to promote the migration of vascular ECs. The coexpression of nestin and CD31 during angiogenesis in alkali-burned rat corneas was examined via immunohistochemical analysis. Western blot analyses revealed that the exposure of human umbilical vein endothelial cells (HUVECs) to hypoxia promoted nestin expression in vitro. Additionally, nestin silencing via siRNA significantly inhibited many of the process associated with VEGF-induced angiogenesis, including tube formation and the migration and proliferation of HUVECs. Moreover, FITC-phalloidin labeling revealed that F-actin filaments were successfully organized into microfilaments in VEGF-treated cells, suggesting a network rearrangement accomplished via F-actin that contrasted with the uniform and loose actin filament network observed in the siRNA-nestin cells. The results of the present study highlight the key role played by nestin in activated HUVECs during angiogenesis. The inhibition of the ERK pathway suppressed the nestin expression induced by VEGF in the HUVECs. Therefore, our study provides the first evidence that nestin-mediated cytoskeleton remodeling in ECs occurs via filopodia formation along the cell edge, facilitating both filopodia localization and cell polarization and ultimately promoting HUVEC migration via VEGF induction, which may be associated with ERK pathway activation.
منابع مشابه
CALL FOR PAPERS Cellular Circadian Rhythms Nestin-mediated cytoskeletal remodeling in endothelial cells: novel mechanistic insight into VEGF-induced cell migration in angiogenesis
Zhen-wei Liang,* Zheng Wang,* Hui Chen, Cen Li, Ti Zhou, Zhonghan Yang, Xia Yang, Yanfang Yang, Guoquan Gao,* and Weibin Cai* Department of Biochemistry, Zhongshan Medical School, Sun Yat-sen University, Guangzhou, Guangdong Province, China; Department of Obstetrics and Gynecology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China; Key Laboratory of F...
متن کاملPhysiological role of adenosine and its receptors in tissue hypoxia-induced
It is well known that the metabolic factors play an important role in the regulation of angiogenesis. Increased metabolic activity leads to decreased oxygen levels and causes tissue hypoxia. Hypoxia starts different signals to stimulate angiogenesis and promotes oxygen delivery to tissues. It has been suggested that released adenosine from hypoxic tissues plays a vital role in angiogenesis. ...
متن کاملInvolvement of RhoA/Rho kinase signaling in VEGF-induced endothelial cell migration and angiogenesis in vitro.
OBJECTIVE Growth factor-induced angiogenesis involves migration of endothelial cells (ECs) into perivascular areas and requires active remodeling of the endothelial F-actin cytoskeleton. The small GTPase RhoA previously has been implicated in vascular endothelial growth factor (VEGF)-induced signaling pathways, but its role has not been clarified. METHODS AND RESULTS VEGF induced the activati...
متن کاملAnti-angiogenic Effects of Metformin, an AMPK Activator, on Human Umbilical Vein Endothelial Cells and on Granulation Tissue in Rat
Objective(s)Metformin is well known for activation of AMP-activated protein kinase (AMPK). AMPK activation inhibits mammalian target of rapamycin (mTOR) as a key signaling process in cell proliferation. Recent epidemiological studies demonstrate that metformin lowers the risk for several types of cancer in diabetic patients. Concerning the critical role of angiogenesis in the incidence and prog...
متن کاملSimultaneous Effect of Resistance Training and Endothelial Progenitor Cell Injection on the Expression of Vegf Angiogenic Factor and Its Relationship with Insulin Resistance in Diabetic Male Rats Induced By Stz
Background: Exercise and the simultaneous use of progenitor cells is a new strategy aimed for reducing diabetic disorders. One of the known mechanisms is angiogenic disorders caused by diabetes. Therefore, the present study was performed to determine the simultaneous effect of resistance training with endothelial progenitor cell injection on the expression of angiogenic factors in the skeletal ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Cell physiology
دوره 308 5 شماره
صفحات -
تاریخ انتشار 2015